Tag Archives: chemistry

Finally, A Solar Panel That You Can Actually See Through!

Solar power technology has been advancing rapidly in recent years. The rapidly decreasing cost and increasing efficiency of solar power has set off a solar revolution worldwide.

Germany, which is currently using solar to produce 50% of its total energy, has led the charge, along with the rest of Europe.

Other countries, like India, have made the expansion of solar infrastructure a primary focus.

The growth of solar power in the last 15 years. Click to enlarge

Now, there’s a new advancement which could end up being the tipping point in the solar revolution: a totally transparent solar concentrator.

The “transparent luminescent solar concentrator” can be placed over windows to gather solar power while still allowing people to actually see through the window.

The concentrator, which was designed by a team of researchers from Michigan State University, can also be used on cell phones or pretty much anything with a clear surface.

Other people have tried to design transparent solar concentrators before, but the materials they used were inefficient (in terms of energy  production) and created some pretty obvious tints on the window.

“No one wants to sit behind colored glass… It makes for a very colorful environment, like working in a disco. We take an approach where we actually make the luminescent active layer itself transparent,”

said Robert Lunt, an engineering professor at MSU who led the research.

A close up of the solar concentrator (Photo: Yimu Zhao)
A close up of the solar concentrator (Photo: Yimu Zhao)

This new solar concentrator uses tiny organic molecules that were specifically designed by Lunt and his team to absorb wavelengths of light that are invisible to the naked eye.

“We can tune these materials to pick up just the ultraviolet and the near infrared wavelengths that then ‘glow’ at another wavelength in the infrared,”

said Lunt while explaining the process. This infrared light is then directed to the edges of the concentrator, where tiny strips of photovoltaic cells convert it into electricity.

Since the molecules used to capture the energy are specifically designed to not absorb or emit light within the visible spectrum, the concentrator appears to be almost completely transparent to the naked eye.

The electromagnetic spectrum. Click to enlarge

The technology is innovative, functional and versatile. Lunt believes it could ultimately become a huge part of our lives:

“It can be used on tall buildings with lots of windows or any kind of mobile device that demands high aesthetic quality like a phone or e-reader. Ultimately we want to make solar harvesting surfaces that you do not even know are there.”

Read the original story from Science Daily here.

Why Ultra-Pure Water Is Actually Bad for Your Health (Video)

We tend to imagine that purity is the ultimate indicator of the quality of water. So why is 100%, ultra-pure water not good for us?

Well the simple answer is that water (H20) purely comprised of hydrogen and oxygen doesn’t provide our body with the natural electrolytes and salts we need to survive.

There is no such thing as truly pure water in the natural world. Even water in the purest springs and lakes contains small amounts of dissolved minerals such as sodium, chloride, potassium, calcium and magnesium.

Oregon’s Crater Lake, which formed in the crater of a long-dead volcano, is thought to be one of the purest natural bodies of water. It is fed almost exclusively by snow and rain. Click to enlarge (Photo: Danita Delimont / Gallo / Getty)

When these minerals dissolve in water, they form the ions which we commonly refer to as electrolytes.

According to eatbalanced.com,

“Maintaining the correct concentrations of these ions in and outside cells in the body is essential for transmitting electrical impulses along nerves and for muscle contraction. They allow us to perform all the “bioelectrical” functions such as moving, heart-beating, thinking, and seeing.”

But not only does pure water fail to provide these essential electrolytes, it tries to rob your body of them when you drink it, potentially creating a fatal imbalance (if you drink enough of it).

This is a result of a process of diffusion, in which dissolved material tends to move from more concentrated solutions to less concentrated ones.

Click to enlarge

You can think of it this way: imagine a room with no gravity, split in half down the middle. You throw a couple hundred bouncy balls into the left side of the room. Since there’s no gravity, they bounce around everywhere.

But if you cut a bunch of holes in the barrier, they will slowly start to spread over to the right side. Some may cross back over to the left, but eventually, they will be evenly distributed across the entire room.

That’s how diffusion works inside you as well.

One of the reasons water is the main component of your body, from you lungs and skin to your blood and organs, is because it’s a universal solvent (ie. it can dissolve anything soluble and is neutral).

Click to enlarge

The water in your organs (the left side of the space room) maintains very specific levels of minerals (the bouncy balls).

When you drink ultra-purified water, it pulls the minerals out of your blood just like the right side of the space room pulled some of the bouncy balls over from the left. Ultra-pure water will even strip the copper off the inside of a pipe!

If you drank enough of it, the lack of minerals would eventually kill you.

These dissolved minerals, often referred to as “impurities”, are also what gives us the different flavors we taste when we consume different tap waters or brands of bottled water.

David Rees of National Geographic examined “Ultra-Pure” water. Check out the video below to see what he found.

The Revolutionary New Propulsion Engine That Even Scientists Didn’t Believe Was Possible

Roger Shawyer is one of the most persistent and driven individuals in the world.

For years, he has been working on a new type of propulsion engine that could theoretically run forever without needing any fuel. He calls his device the EmDrive.

The engine works by bouncing around microwave radiation in a small space to produce thrust, rather than burning a propellant fuel. The microwaves are produced by solar power which is generated from panels on the outside of the engine.

Roger Shawyer (left), receiving a DTI SMART Award for his EmDrive concept in August 2001 . Click to enlarge

When he first began proposing the idea for a quantum vacuum plasma thruster, Shawyer was laughed at. Most scientists he talked to told him the idea was ludicrous, saying that (among other issues) it defied the theory of conservation of momentum.

Only a group of Chinese scientists was willing to actually try out the idea. In 2009, they built a model of Shawyer’s engine that actually worked, producing enough thrust to power a small satellite.

Even then, many people weren’t convinced. But recently, American scientist Guido Fetta and a team at NASA Eagleworks (NASA’s experimental technologies division) recreated the engine for themselves, and found that the design actually does in fact work.

NASA’s Eagleworks Labs logo

In a statement about their findings, the NASA research team said:

“Test results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.”

The whole mystery behind the engine stems from the difference between how physics operates on a large scale in our every day world, and how it operates on the microscopic, quantum level (ie. quantum physics).

When we observe molecules in their most basic form, they often don’t follow the same rules of physics that govern our visible world.

For example, if you throw a tennis ball off of a wall, you wouldn’t expect it to speed up after hitting the wall- its acceleration is totally dependent on how much force you release the ball with.

Momentum (p) is equal to Mass (m) times Velocity (v). The law of conservation of momentum says that for large objects like a tennis ball, the momentum when the ball leaves the wall must be exactly the same as when it hit the wall (minus whatever force is lost to friction). Click to enlarge

But on the quantum level, things change. Shawyer describes the principles of how the engine works here, but the wording is a bit overly scientific if you’re not an engineer, so I’ll try to break it down as best I can.

Basically, the microwave particles that the EmDrive uses can travel extremely fast (up to almost the speed of light). Because of this high velocity, the particles exert a force (albeit a very, very small one) on the reflective inner walls of the engine.

So, each reflector has a different velocity at its surface, depending on how many radiation molecules are hitting it and how fast they’re moving. Imagine someone throwing marbles at the surface of a number of drums- the drum being hit by the largest amount of fast-moving marbles is going to be vibrating the most.

The microwaves cause vibrations on the reflectors similar to how a droplet creates ripples in the water. However, in water, this energy can dissipate outwards, whereas is the EmDrive, this energy gets stored on the surface of the reflector

The radiation molecules have virtually no mass. Because of this, their momentum can actually be increased by bouncing them from a reflector with a lower surface velocity to one with a higher surface velocity. This added momentum comes from the difference in force between the two surfaces.

By taking advantage of this principle and carefully designing the inner geometry of the thruster, Shawyer was able to create a compartment that perfectly bounced the microwave radiation between reflectors, steadily increasing its momentum until it gets released out of the end as thrust.

A diagram of the thrust chamber, illustrating the concept. Click to enlarge

And since the microwaves are generated using solar panels, the engine could theoretically work forever, or at least until its hardware fails.

There still needs to be much more extensive testing to prove that the engine can be replicated and utilized on a larger scale, but the basic concept has been demonstrated twice now.

The lesson: never stop pursuing your dreams. The people who make the biggest impacts on our society are usually people who have been called crazy more than a handful of times throughout their lives.

So, to you Roger Shawyer: thanks for being a stubborn dreamer. I hope your engine plays a big role in revolutionizing this era of space exloration and discovery!

(h/t Sploid)

The Iodine Clock Reaction Happens So Fast That You Might Not Believe This Video Is Real

If I told you I could make a glass of liquid go from being totally clear to almost completely black in a split second, you would think I was crazy.

But science has a way of making crazy things happen. The iodine clock reaction is very real and very awesome. Check it out in the video below:

So what’s going on chemically? Well basically, it’s all comes down to the iodine and the sulfur.

Mixing ionic compounds into a solution with water causes them to separate into their basic components.

In the first glass, the ionic compound sodium sulfite (Na2SO3) divides itself into two sodium ions (2Na+) and a sulfite ion (SO3).

Na2SO3  → 2Na+ SO3

This sulfite then steals one of the hydrogens from the citric acid (C6H8O7) in the mixture, creating bisulfate, HSO3.

SO3− + H+  → HSO3

In the second glass, the sodium iodate (NaIO3), separates into sodium ions (Na+) and iodate ions (IO3).

NaIO3  → Na+ IO3

When the two glasses are mixed, a number of reactions happen. First, the iodate ions react with the bisulfite (HSO3) to produce hydrogen sulfate (HSO4). This leaves the iodide ions (I) by themselves.

IO3 + 3 HSO3 → I + 3 HSO4

Then the excess iodate reacts with the iodide ions and hydrogen ions to form iodine (I2) and water.

IO3 + 5 I + 6 H+ → 3 I2 + 3 H2O

But just as soon as the iodine is created, it is reduced back into iodide ions by the bisulfite still in the solution from the initial reaction.

I2 + HSO3 + H2O → 2 I + HSO4 + 2 H+

The first two reactions happen relatively slowly, but this third reaction happens almost instantaneously every time an iodine molecule is created.

Eventually though, the supply of bisulfite runs out, allowing the iodine molecules to survive. This gives the iodine an opportunity to react with the starch that was dissolved into the water at the beginning, producing an extremely dark shade of blue.

Adding a little bit of bisulfite back into the mix immediately re-ionizes the iodine (breaking it into separate I−  molecules again) turning the water clear once more until that bisulfite has been used up as well (which is why the water darkens back up).

The experiment is called the “clock reaction” because you can control how long it takes for the dark color to appear by adjusting the amount of bisulfite.

A Mysterious Giant Crater Just Opened Up At the “End of the World” (Video)

Yamal is a peninsula in northern Siberia. In the language of the peninsula’s indigenous inhabitants, the Nenets, Yamal means “end of the world”.

This past week, aerial images of the peninsula posted to YouTube showed a giant, 80m wide crater. Check out the footage below:

Authorities from Yamal have organized a team of scientists from Russia’s Center for the Study of the Arctic, the Cryosphere Institute of the Academy of Sciences and Russia’s Emergencies Ministry to investigate.

At first glance, it just looks like a sinkhole. But experts who have examined the images say the debris around the edge of the hole isn’t consistent with a sinkhole, and the blackened rim of the crater indicates “sever burning”.

This has led to speculation that the hole was the result of an explosion, a space laser, or even the burn-hole left behind by an alien spaceship.

One of the best theories I’ve heard so far comes from an expert at the Sub-Arctic Scientific Research Center in Canada. He theorized that warming temperatures in Siberia could be melting the thick layers of ice and permafrost on Yamal Peninsula.

When that ancient ice is melted, it releases gases that have been trapped within it. The theory is that these gases mixed with water and salt closer to the surface, creating an explosive chemical reaction (think vinegar and baking soda, but MUCH bigger) which pushed the earth up out of the crater, kind of like the cork popping off a champaign bottle.

It’s also possible that simply the pressure of the released gas alone could have caused this same cork-pop effect.

Those are still just theories though. I’ll definitely be keeping up with this investigation as more information becomes available.

(h/t 9News)

Did You Know… There’s A Rare Medical Condition That Gets People Drunk Off Bread and Pasta

Matthew Hogg is pretty much your average 34-year-old British guy. Except for one thing: eating bread or pasta has the same effect on him that pints of lager and ale have on his friends.

Hogg suffers from a rare condition known as auto-brewery syndrome. The condition causes the body to build up high levels of yeast in the intestines. As a result, carbohydrates are rapidly fermented into ethanol (pure alcohol) during digestion.

Matthew Hogg with his girlfriend (Photo: David Charlton/Caters News)

The result is that sufferers are constantly feeling varying levels of intoxication throughout the day, depending on what they eat (it’s almost impossible to completely avoid sugars and carbs all the time).

Though it may sound like a pretty sweet deal to people who enjoy getting drunk, Hogg says the reality is much more sobering (no pun intended). In a recent interview, Hogg told Vice News,

“It’s had a huge and devastating effect on my life.”

He is chronically fatigued, and often finds himself disoriented or unable to focus.

One of the biggest problems is that the condition is so rare and so strange that many people are often skeptical as to whether the condition is even real at all:

“I’m constantly reading messages from visitors to my website who suffer from the condition, saying their doctor, boss, co-workers, and even friends, family and partners, just don’t understand… People think we’re just making this condition up.”

Brewing yeast under a microscope. Click to enlarge

Yeast are bacteria that are used in a number of different cooking methods. Some types of yeast are used to make bread rise while others are used for fermentation during the alcohol brewing process. The bacteria is found in all types of other foods as well, from fruits and vegetables to milk and cheeses.

Usually, the brewing yeast Saccharomyces passes through the body along with the rest of your food’s components.

However, in some rare cases, like when a person’s immune system is depleted or after a person takes antibiotics (which can wipe out the natural digestive bacteria in your gut), this yeast is allowed to build up, leading to the auto-brewing effects described above.

Hogg’s condition made it hard for him to find a job, but he wasn’t going to give in to it. So, he created his own website, The Environmental Illness Resource, to help inform people about rare conditions like his own.

Well played, Matthew.

(h/t People and NPR)

The Story of the Man Who Only Made $10 for Figuring Out How to Make Diamonds

In 1772, French nobleman and chemist Antoine Lavoisier used a lens to concentrate the sun (magnifying-glass style) on a diamond in an atmosphere of oxygen. The diamond released only carbon dioxide (CO2), proving that diamonds were made up only of carbon.

Then in 1779, English chemist Smithson Tennant further bolstered the findings by burning both graphite (which is also composed completely of carbon) and diamonds, and showing that the amount of gas produced by the two minerals matched the chemical equivalence he had established for them.

Diamond (left) has a complex geometric crystal structure, while graphite (right) is made of more simple haxagonal sheets

From that point on, the race to manufacture a synthetic diamond was on. It become a sort of holy grail for both scientists and scam artists alike at the time.

Individuals claimed to have successfully manufactured diamonds a number of times over the next century and a half, but none of their claims proved to be valid or their experiments reproducible.

Enter Howard Tracy Hall, who typically referred to himself as H. Tracy Hall or simply Tracy Hall.

Hall was born in Ogden, Utah in October of 1919. He was a bright kid: his hero was Thomas Edison and he announced in the fourth grade that he would one day work for General Electric.

A recent picture of Hall

After spending two years at Weber College, he got his bachelors and masters at the University of Utah in Salt Lake City.

He then spent two years in the Navy before heading back to the University of Utah to get his Ph. D. in physical chemistry. He finished the graduate program in 1948.

Just two months later, he realized his childhood dream: GE offered him a position in their Research Lab in New York, working on “Project Superpressure”, which aimed to manufacture a synthetic diamond.

When Hall arrived at the lab in New York, GE was in the process of buying a massive $125,000 press that was capable of generating pressures up to 1.6 million pounds per square inch in a confined space.

Did you know… Ronald Reagan hosted a show on CBS called “General Electric Theater” sponsored by GE’s PR department from 1953 until 1962

Hall wasn’t impressed. He had previously built his own pressure chamber from a salvaged 35-year-old Watson-Stillman press, and thought he could create a better machine with only an additional $1,000.

Unfortunately, GE wasn’t interested. They refused to give him the funds or to even let him use their state-of-the-art machine shop to build it.

But Hall wasn’t going to be stopped. He got a friend and colleague to let him use the machine shop after hours and got a former supervisor to persuade the company to purchase the expensive carboloy (tungsten carbide dispersed in cobalt) that Hall needed to build the chamber.

On December 16, 1954, almost all of the researchers had left for Christmas break. Hall, on the other hand, was in the lab by himself, preparing for final testing of his new pressure chamber. He had  experienced a number of false starts, but was stubborn in his pursuit.

He later described the moment when he unsealed his apparatus:

“My hands began to tremble; my heart beat rapidly; my knees weakened and no longer gave support. My eyes had caught the flashing light from dozens of tiny . . . crystals.”

H. Tracy Hall, 1954

Hall tried the test a couple more times, and got the same result every time. He then had a colleague, Hugh H. Woodbury, reproduce the experiment. He too, created diamonds.

Hall reported his discovery to GE officials. They initially thought his findings were exaggerated, but after being shown the experiment in front of them (with Hall outside the building), they were convinced.

On February 14, 1955, GE announced that it had manufactured the first synthetic diamonds. Media outlets around the world trumpeted it on the front page.

For his efforts, they gave Hall a $10 savings bond. “Big deal,” he said later.

The diamonds weren’t large enough or of high enough quality to be sold as jewelry, but since diamonds are one of the hardest minerals on earth, they were perfect for industrial applications, allowing us to cut and harvest minerals that had been impossible to collect before.

Upset by the lack of credit, Hall left GE for BYU shortly after the announcement. However, the work was so ground-breaking that the government slapped a secret label on Hall’s device, preventing him from using it in his research.

H. Tracy Hall with his synthetic diamond machine. Click to enlarge

Still, Hall refused to be stopped. He designed a new apparatus, called the tetrahedral press, which was even better than the first one and circumvented all of the patents held by GE.

He published his work on the new pressure chamber in a popular scientific journal. The government responded by slapping another secret label on the new device.

However, the government lifted this second secret label a few months later, allowing Hall access to his invention. He and two other colleagues would later start MegaDiamond, which remains one of the largest synthetic diamond providers to this day.

H. Tracy Hall with colleagues and fellow MegaDiamond founders Bill Pope and Duane Horton. Click to enlarge

Since the 1950s, advances in other technologies have improved Hall’s methods, and synthetic diamonds are now used in many electronic devices like laptops and cell phones.

The modern methods are able to create synthetic diamonds as large as 12 carats with much higher quality and clarity, allowing them to be sold for jewelry as well.

After his retirement, Hall became a tree farmer. He passed away at age 88 in July of 2008.

(h/t LA Times)