Tag Archives: coronal mass ejection

A Few Reasons Why Tomorrow Might Be A Bit of a Strange Day…

Tomorrow will not be your ordinary Friday. For starters, tomorrow is the 13th, making tomorrow a Friday the 13th.

There will also be a full moon in the sky when the clock strikes 12:01 a.m. tomorrow morning. The last time that happened? October 13, 2000. The next time it will happen? August 13, 2049.

I’m not one for superstitions, but there is one thing I haven’t mentioned yet. Our sun has been shooting off powerful solar flares the last few days, including this one captured by NASA’s Solar Dynamics Observatory early Tuesday morning:

Three recent solar X-flares emitted by the Sun. Click to enlarge (Courtesy of NASA/SDO)

Solar flares are brief, high-radiation eruptions that happen on the surface of the Sun. The three flares emitted in the past two days (pictured above) have been X-flares, the most powerful classification of solar flare. X-flares emit radiation at virtually every wavelength, from radio waves, to the light we can see, to x-rays and gamma rays.

Because of all of the different electromagnetic waves that the flares emit, they can disrupt communications here on Earth. In fact, the flare in the video above caused a temporary radio blackout here on Earth, according to Space.com.

The electromagnetic spectrum. Click to enlarge

Did I mention CMEs? CME stands for coronal mass ejection. This occurs when a powerful solar flare emits a plasma burst along with the radiation. A plasma burst can cause polar geomagnetic storms which are capable of severely disrupting communications and satellite systems, including GPS.

Along with having the potential to cause low levels of radiation poisoning in humans, a strong CME would also create surges in electrical wires, destroying transformers and leaving millions without power.

Despite the scary stuff, CME’s are pretty fascinating. These plasma burst clouds actually compresses Earth’s own magnetic field, which is what causes so many of the potential issues.

Artist depiction of how a CME plasma burst interacts with Earth’s magnetoshpere (Courtesy of NASA)

At first, officials at the U.S. Space Weather Prediction Center didn’t think that the flare in the video above had emitted a CME, only to find later that it had actually produced two of them.

They are expected to give Earth a glancing blow when they reach Earth orbit…tomorrow, Friday the 13th.


The Solar Flare So Intense That Telegraphs Spontaneously Caught Fire

Back in 1859, Richard Carrington, one of England’s leading astronomers at the time, witnessed one of the most intense solar flares to hit Earth in recent history. Here’s the story from NASA Science:

At 11:18 AM on the cloudless morning of Thursday, September 1, 1859, 33-year-old Richard Carrington—widely acknowledged to be one of England’s foremost solar astronomers—was in his well-appointed private observatory. Just as usual on every sunny day, his telescope was projecting an 11-inch-wide image of the sun on a screen, and Carrington skillfully drew the sunspots he saw.

Right: Sunspots sketched by Richard Carrington on Sept. 1, 1859. Copyright: Royal Astronomical Society: more.

On that morning, he was capturing the likeness of an enormous group of sunspots. Suddenly, before his eyes, two brilliant beads of blinding white light appeared over the sunspots, intensified rapidly, and became kidney-shaped. Realizing that he was witnessing something unprecedented and “being somewhat flurried by the surprise,” Carrington later wrote, “I hastily ran to call someone to witness the exhibition with me. On returning within 60 seconds, I was mortified to find that it was already much changed and enfeebled.” He and his witness watched the white spots contract to mere pinpoints and disappear.

It was 11:23 AM. Only five minutes had passed.

A solar flare from December 5, 2006. It was so intense it actually damaged the instrument that took the picture. (Photo: NASA)

Just before dawn the next day, skies all over planet Earth erupted in red, green, and purple auroras so brilliant that newspapers could be read as easily as in daylight. Indeed, stunning auroras pulsated even at near tropical latitudes over Cuba, the Bahamas, Jamaica, El Salvador, and Hawaii.

Even more disconcerting, telegraph systems worldwide went haywire. Spark discharges shocked telegraph operators and set the telegraph paper on fire. Even when telegraphers disconnected the batteries powering the lines, aurora-induced electric currents in the wires still allowed messages to be transmitted.

Some of the effects of solar flares on Earth (click to enlarge)
Some of the effects of solar flares on Earth (click to enlarge)

“What Carrington saw was a white-light solar flare—a magnetic explosion on the sun,” explains David Hathaway, solar physics team lead at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Now we know that solar flares happen frequently, especially during solar sunspot maximum. Most betray their existence by releasing X-rays (recorded by X-ray telescopes in space) and radio noise (recorded by radio telescopes in space and on Earth). In Carrington’s day, however, there were no X-ray satellites or radio telescopes. No one knew flares existed until that September morning when one super-flare produced enough light to rival the brightness of the sun itself.

“It’s rare that one can actually see the brightening of the solar surface,” says Hathaway. “It takes a lot of energy to heat up the surface of the sun!”

The feature photo is a solar flare from August 31, 2012. Image credit: NASA/GSFC/SDO