Tag Archives: insects

Why This Beetle Is Whiter Than Anything Human Technology Can Produce

If you ever visit Southeast Asia, you might come across the whitest thing you’ve ever seen.

And it’s not this guy:

“Double dream hands!”

It’s the Cyphochilus beetle, a beetle whose shell is whiter than even the whitest paper, the whitest snow, even the whitest paint.

In fact, it’s brighter than anything that human technology could create using a material as thin as the beetle does.

So what is this material? Well, it’s called chitin.

Chitin is similar to the cellulose, the main material in a plant’s cell wall. It forms complex, tightly-knit networks of filaments that build the shells of crustaceans and the exoskeletons of many insects.

A close-up of the chitin filament network on the Cyphochilus beetle’s shell. Click to enlarge (Image: Lorenzo Cortese)

But on it’s own, chitin is not a very good reflector of light at all, so researchers at the University of Cambridge and the European Laboratory for Non-linear Spectroscopy in Italy came together to try to uncover the secret behind the Cyphocilus beetle’s extraordinary brilliance.

What they found was that it was not the material itself that made the beetles look so white, but the geometric pattern in which the chitin filaments had arranged themselves.

A close-up of the beetle. Click to enlarge (Photo: P. Vukusic)

The colors we perceive come from the ways in which different colors of light reflect off of different materials.

However, the structure of the beetle’s shell reflects light anisotropically. This means that all the different colors of light get reflected in the same direction, which is why the shell appears to be such a brilliant white (mixing all of the colors of light gives you white light).

But unlike man-made reflectors, which tend to be fairly thick, the beetle’s individual scales are only thousandths of a millimeter thick. This keeps them light, minimizing the amount of energy the beetle has to expend while flying.

Read more from the New Scientist here.

The Strongest and Most Misunderstood Creature in the World (Video)

When you think of strength in the animal kingdom, it’s natural to think of some of the massive majestic creatures we’re all so familiar with: lions, elephant, grizzlies, rhinos, hippos…

These animals are definitely powerful, but when you examine pound-for-pound strength, you quickly realize that it’s the smallest creatures who are really the most impressive lifters.

Take the leafcutter ant, for instance. These ants cut off and carry leaf segments that are sometimes up to 50 times heavier than they are.

Leafcutter ants march across the forest floor. Click to enlarge

But even the leafcutter ant is no match for the dung beetle when it comes to true strength.

Though their appetite for dung has given them a bit of a bad name in our society today, dung beetles (also known as scarabs) were actually worshipped in ancient Egypt.

An eagle-winged scarab beetle on the door to the Edfu temple in Egypt. Click to enlarge

The ancient Egyptians believed that the sun was rolled across the sky every day by a giant scarab god.

Dung beetles may not actually be gods, but they definitely have superhuman strength. The insects are able to drag dung balls up to 1,140 times their body weight- the equivalent of an average human pulling six double deckers buses full of passengers.

But there’s more to dung beetles than just eating poop.

For example, they’re actually pretty good parents. Dung beetles are one of only a few groups of insects that has been shown to actively care for their offspring. There is even a monogamous species of dung beetle that mates for life.

Even more interesting is the dung beetle’s navigation system. After rolling a fresh poop ball, the beetles will climb on top of it and dance around, orienting itself.

Scientists theorized that the beetles were actually using the Milky Way to orient themselves and navigate.

One of the dung beetles used in the Milky Way navigation testing. Click to enlarge

They tested this theory on one species of African dung beetle by putting little hats over them that covered their eyes.

The beetles still perched atop their poop balls to try and orient themselves, but only were able to wander around aimlessly without being able to see the stars, proving that they were using the heavens to navigate.

So give the dung beetle some credit- they’re probably much more intelligent and complex than you ever imagined.

To learn more about dung beetles, check out these 10 Fascinating Facts About Dung Beetles from About.com.

Villagers Just Caught the Largest Ever Aquatic Insect And It’s Bigger Than Your Hand

Villagers from a village in the Sichuan province of China just collected the largest ever aquatic insect specimen.

The bug, a massive dobsonfly, has a wingspan of more than 8 inches. The previous record-holder for the world’s largest aquatic insect was a South American helicopter damselfly, which had a wingspan of 7.5 inches.

Helicopter damselfly (Megaloprepus coerulatus)

Though dobsonflies are relatively common (there are over 200 species across Asia, Africa and South America), one of this size had been unheard of until now.

Looking at a dobsonfly can actually be very misleading. For one, those massive, grisly-looking mandibles protruding from its head are actually only used for mating. Males flaunt them to impress the females and hold them in place during the actual mating process.

A male dobsonfly (on the right) courts a female before mating. Click to enlarge

Also, those massive wings are pretty much all for show. The insect almost never flies, preferring to spend the bulk of its time in the water (both underwater and on the surface), or sheltering underneath rocks.

Dobsonflies are also a biological indicator of water quality. They prefer clean water with very low levels of pollution and a relatively neutral pH. If water quality falls below their standards, they will leave and find a new body of water to call home.

The villagers gave the record-setting specimen to the Insect Museum of West China.

(h/t Discovery)

An Aggressive Jumping Ant With Jaws Like A Bear Trap Is Invading Southeastern U.S.

Meet the trap-jaw ant. This gnarly family of ants has massive mandibles which can open up to 180 degrees. These jaws are coated in tiny, extremely sensitive hairs, which allow the ants to snap their jaws closed faster than their brains can even process the movement (some claim they are the fastest jaws in the world).

The Odontomachus trap-jaw  ant

These formidable ants have another amazing (but rather scary) ability: when threatened, they snap their powerful jaws against the ground, creating a massive amount of force which shoots them upwards like a piece of popcorn.

With painful stingers attached to their abdomens, being surrounded by a bunch of these jumping ants could be a very unpleasant experience.

“They look like little hammerhead sharks walking around,”

said D. Magdalena Sorger, a scientist who has been studying these insects as part of her PhD research at North Carolina State University.

There are four species of trap-jaw ants native to the U.S., but Sorger’s research has focused on a particularly aggressive species of trap-jaw ants that originated in South America.

This invasive species of trap-jaw ant, known as Odontomachus haematodus, has actually been living in the States for around 50 years now, but studies have shown that the ant has been rapidly spreading along the Gulf Coast in recent years.

The invasive trap-jaw ant species Odontomachus haematodus (Courtesy of Alexander Wild)

Why are they only spreading now? Sorger isn’t sure yet, but suggests that they were either building up their numbers before spreading, or that changes in climate have allowed them to inhabit a wider range.

So, should we be worried about a trap-jaw ant takeover? That’s pretty unlikely, according to invasive ant specialist Andrew Suarez. He points out that unlike other invasive ants (like fire ants, for example), these South American trap-jaw ants,

”don’t have colonies with tens to hundreds of thousands of workers that can overwhelm the local fauna.”

He does point out that their sting is particularly painful however, and that some people may be allergic to the venom.

Read the original story from National Geographic here.

Feature image courtesy of Alexander Wild.

A Honeybee Was In the Clutches of A Spider. Then His Comrade Saved the Day (Video)

I saw this video earlier today and was very intrigued. I’ll let you watch it first before I make any observations.

So what do you think is going on here? Bumble bees, like other insects that live in queen-controlled colonies, are basically just extensions of the queen- pretty much every action they take is because of directions from the queen.

One of the ways these types of insects communicate is with pheromones, chemical substances secreted by the insects which convey specific pieces of information based on their scent.

Personally, I don’t think individual bumble bees are smart enough to recognize that a fellow bee is in danger and then consciously decide to go help it. I do, however, think its possible that the first bee started releasing “distress” pheromones (like those released when a beehive is attacked) when he was ensnared.

Smelling these distress pheromones prompts other nearby bees to become aggressive to protect the hive. I think that the second bee probably smelled the distress hormones of the trapped bee and responded by attacking the closest thing it could find: the spider.

That’s just my guess though. If you have any other theories, please share them in the comments!

(h/t Gizmodo)

This Animal Isn’t A Snake. Think You Can Guess What It Really Is? (Photos)

Professor Daniel Janzen, a biology professor from the University of Pennsylvania, has spent years of his life cataloguing and photographing a very unique group of creatures: caterpillars that defend themselves against predators by looking and acting like snakes.

Check out some more pictures of “Snake Caterpillars” taken by Professor Janzen below:

Snake caterpillars can be found in Costa Rica, Guatemala, Belize, and some parts of Mexico. Their markings resemble a snake’s head, which they can actually use to “strike” at would be predators (though they obviously can’t bite like a real snake would).

Janzen is an ecologist and what most would call a caterpillar expert. He’s been tracking these insects in Costa Rica since 1978 and  has been an expert in the field of entomology (the study of insects) for 50 years.

Dan Janzen, with a prehensile-tailed porcupine on his shoulder (Photo: Winnie Hallwachs / NOVA)

He splits his time between his labs and the field, spending half the year at the University and the other half in Central America, searching for strange new species of insect like the snake caterpillars.

Biologists Are Training Bomb-Sniffing Bees to Clear Landmines Left Over from the Bosnian War

Bees are known for having one of the best olfactory systems in the entire animal kingdom, and are said to have as strong of a sense of smell as the dogs we use to sniff out bombs our trails made by fugitives. Here’s Rebecca Nesbit, a researcher at the insect technology firm Inscentinel:

“Bees are at least as good as sniffer dogs but are cheaper and faster to train, and available in much larger numbers. It is dependent on the specific odour, but bees can detect some odours that are present in parts per trillion – that’s equivalent to detecting a grain of salt in an Olympic-sized swimming pool.”

A team of biologists from France and Croatia have come up with a creative and ingenious way to take advantage of this extraordinary sense of smell: using bees to locate approximately 120,000 unexploded landmines left over from the million that were planted during the Bosnian war (1992-95).

A de-miner searching for unexploded landmines in central Croatia (Photo: AP/Darko Bandic)

Although the Bosnian government has done its best to carefully mark all of the active minefields, the region was just hit with the worst floods on record. Many fear that the floodwaters and resulting landslides may have moved many of the landmines to new locations.

Yves Le Conte is the director of the bee and environment unit at INRA, an agricultural research body in southern France. Four years ago, he was approached by a Croatian scientist who was worried about the danger the unexploded mines posed to Bosnian farmers.

Yves Le Conte at his research facility in Avignon, France (Photo: Kathy Hanin)

So Le Conte set about training bees to locate TNT. To do this, he took TNT and buried it underneath sand coated with a sugary syrup to attract the bees. The bees quickly learned to prefer the pots with TNT in them, since they contained the sugary treat as well.

When the bees are sniffing out actual landmines, they lose interest after about half an hour, since there is no sugary syrup on top of the TNT in the mines. However, they can be easily and quickly re-conditioned to seek out TNT by repeating the original process. The scientists track the bees movements using heat-sensitive infrared photos taken every 10 seconds.

The EU has approved funding for a large scale test of the process next month, using a full colony of 30,000 bees.

Read more from The Telegraph here.

This Guy Creates Ultra-Realistic Insect Sculptures Made Entirely of Recycled Watch Parts

Justin Gershenson-Gates describes himself as the grandson of a railroad man and the son of a gearhead. Justin, however, turned into a world-class artist.

He refers to his work as, “A Mechanical Mind”: an infusion of sculpture and machines. Here’s Justin describing his art form:

“My aim is to show the beauty of the mechanical world- a place generally hidden from the public behind metal and glass … My pieces display the more delicate and ephemeral side of gears, rather than the cold, hard factory feel they normally portray.”

Click an image to enlarge.

You can see more of Justin’s work (and purchase some if you’d like) from his website here.

How Scientists Are Using Genetically Modified Mosquitos to Combat Disease

Jacobina is a small farming town in the eastern Brazilian state of Bahia. Like in many other places in Brazil, Jacobina is plagued by dengue fever The most serious form of the disease, known as dengue hemorrhagic fever, can cause shock, comas and death. The disease is primarily carried by the Aedies aegypti species of mosquito and is one of the leading causes of illness and death in Brazil.

The people of Jacobina had tried out all sorts of different strategies to combat the disease-carrying mosquitos with little success. Methods like air fumigation and putting larvicides in the water were ineffective because the mosquitos tend to live and breed inside homes, and are able to build up a resistance to the insecticides.

Mosquito nets put over beds had little impact because the mosquitos that carry the disease only bite during the day, and public education campaigns urging citizens to wear long sleeves and use repellent mostly fell upon deaf ears.

The city of Jacobina- click to enlarge. (Photo: Carlos Augusto)

So Aldo Malavasi, president of Moscamed, decided to try out a bold, mostly untested strategy. He and his team worked with mosquitos genetically modified with a lethal gene (the mosquitos are kept alive in the lab using the antibiotic tetracycline). This method for genetically modifying mosquitos originated with Oxitec, a company which describes itself as an “innovative insect controller”.

The modified mosquito, known as the OX513-A, is the first ever genetically modified insect to be released into the wild- they were initially tested in 2010 in the Cayman Islands and Malaysia, but only in small numbers.

Once Moscamed’s collection of genetically modified mosquitos reached larval state, Malavasi and his team extracted all the males (who don’t bite) and destroyed the females.

Twice a week, Moscamed workers hop in trucks and drive around releasing the genetically-altered males, who then mate with females, passing on the lethal gene which kills the offspring since they have no access to the antibiotic.

A worker releasing genetically modified mosquitos (Photo: Vincent Bevins/L.A. Times)

There have been some concerns raised though. Among these is the worry that a decline in Aedies mosquitos will simply lead to an increase in the population of Asian tiger mosquitos, which also live in the area. Malavasi points out, however, that tiger mosquitos are much less efficient in terms of spreading dengue fever.

Some critics of genetic modification also raise concerns that a few female mosquitos will inevitably end up getting released with the males, and worry about the consequences of one of them biting a human. Malavasi also dismisses this worry, saying that it’s highly unlikely that the female mosquitos would come into contact with the antibiotic tetracycline in just the right doses for them to survive after release.

Malavasi also stresses that field tests in isolated towns like Jacobina are what give us the answers to many of our questions and concerns, adding,

“We need to provide alternatives because the system we have now in Brazil doesn’t work.”

Alvo Malavasi (left) examines a sample of mosquitos with a colleague
Aldo Malavasi (left) examines a sample of mosquitos with a colleague

The people of Jacobina, tormented by dengue fever for years, are all for the plan, and Moscamed does a good job of remaining transparent. They hold regular public meetings with local health officials to answer questions and have passed out literature about the project to the people of Jacobina.

Moscamed has reported a 90% decrease in the population of the Aedies mosquito thus far.

Read more from the Global Post here.

Feature photo courtesy of CORBIS.

The Bright Side of the Polar Vortex: It’s Killed Off A Bunch of These Invasive Stink Bugs

The polar vortexes have brought a lot of damage, danger, and just general discomfort to people who are not used to such drastically cold conditions.

But there has been at least one positive effect of this weather. A team of entomologists at Virginia Tech lead by Thomas Kuhar has been gathering Asian stink bugs near their campus for 3 years.

The brown marmorated stink bug, properly known known as Halyomorpha halys, was mistakenly introduced in Pennsylvania in 1998 and quickly spread to 38 different states.

The brown marmorated stink bug (Photo: NPR)
The brown marmorated stink bug (Photo: NPR)

The bugs have been plaguing homeowners (they congregate in walls, shingles, and attics when it gets cold) and destroying crops across the country since they arrived in the late 90s.

The usual winter die-off rate is about 20-25% of the stink bugs, according to Kuhar and his team. This year, however they saw 95% of the population die off.

Read the full story from National Geographic here.

Feature photo courtesy of Leske, 2010.