Tag Archives: lizards

Kids as Young As Five Hunt Giant Bird-Eating Goliath Tarantulas in the Venezuelan Jungle (Video)

Children in the Piaroa tribe in Venezuela are taught at a young age how to fend for themselves, including how to find food while on their own in the jungle.

One of the youngsters’ favorite jungle snacks comes right out of most people’s nightmares: the goliath birdeater tarantula, the world’s largest spider.

These huge tarantulas can reach up to 11 inches across. Their massive size allows them to eat small vertebrates like snakes, lizards, and frogs. While birds aren’t a primary part of their diet, goliath tarantulas will definitely consume small birds if the opportunity arises.

This picture gives you an idea of just how massive these spiders are. Click to enlarge

But despite their frightening reputation with us, the goliath has a different reputation to the Piaroa children: the reputation of being a delicious snack.

The children are taught at a very young age how to find them, catch them and roast them, and apparently they’re pretty tasty.

Check out the video below to watch Orlando and two of his young Piaroa companions hunt these spiders and enjoy their hard-earned treat:

(h/t BBC’s Human Planet)

Advertisements

How These All-Female Lizards Are Able to Reproduce and Thrive Without the Help of Any Males

As far back as the 1960s, scientists were aware that a number of whiptail lizards in Mexico and the southwestern United States were made up entirely of females.

The most notable of these species, the New Mexico whiptail lizard, is able to reproduce healthy, well-bred offspring without the aid of male fertilization.

Whiptails aren’t the only species that reproduce asexually. In fact, there are 70 other vertebrate species that can do it. But the New Mexico whiptail may have unlocked the secret as to how it’s possible for a species that produces exclusively asexually to thrive.

Komodo dragons are among the vertebrate species that are able to reproduce asexually

Peter Baumann works at the Stowers Institute for Medical Research in Kansas City, Missouri. He co-authored a study on the lizards that was published in the journal Nature back in 2010.

Baumann explains that parthenogenteic species (species that reproduce without fertilization), are genetically isolated because they only inherit the DNA of one parent.

This means that any genetic weaknesses, like susceptibility to a disease or physical mutation, can’t be “overridden” by healthy genes from a second parent. The shallower the gene pool, the more likely it is to produce sick or mutated offspring.

To deal with this issue, the all-female whiptail lizard species have evolved to start the reproductive process with twice as many chromosomes as their sexually-producing lizard relatives.

New Mexico whiptail lizards were actually the result of two different species of lizard (the western whiptail and little striped whiptail) interbreeding to form a hybrid species. Because of this, these all-female lizards are equipped with a very diverse gene pool.

Left: little striped whiptail. Middle: New Mexico whiptail. Right: tiger whiptail. Click to enlarge

Instead of combining homologous chromosomes (like sexual species do, getting one set from each parent), the lizards pair recombined sister chromosomes instead. This maintains heterozygosity in the offspring.

Here’s a more simple way to think about it. Every one one us has DNA from generations and generations of our ancestors. When we reproduce, we combine our DNA with our partner’s- the resulting offspring’s genetic codes contains parts of both parents’ DNA.

But since we have such vast genetic diversity from all of our ancestors, the exact coding of the genes we pass along when we reproduce isn’t always the same, which is why brothers and sisters don’t all look the same.

A basic way to visualize how genetic information is passed on in sexual reproduction. Note that the “marbles” passed on by each individual parent are different for the two children. Click to enlarge

So, rather than combining its genetic code with that of a male, the whiptail lizard combines two different versions of its own DNA code, ensuring that each pairing of sister chromosomes will have multiple alleles (different forms of a gene), which gives the offspring the genetic diversity it needs to be healthy.

This discovery means that,

“these lizards have a way of distinguishing sister from homologous chromosomes,”

says Baumann. How do they do this? The researchers aren’t sure yet, but it’s the next question they will be investigating, along with the question of how they evolved to start reproduction with double the normal amount of chromosomes.

Female whiptail lizards perform courtship rituals with one another to stimulate ovulation. The top lizard will lay smaller eggs while the one on the bottom will lay larger eggs. They switch spots every mating season. Click to enlarge

Though it may seem like asexual reproduction would eventually hurt a species in the long run, Baumann also pointed that,

“You’re greatly increasing the chances of populating a new habitat if it only takes one individual.”

It seems to be working pretty well for these lizard ladies.

Read the original story from the Scientific American here.